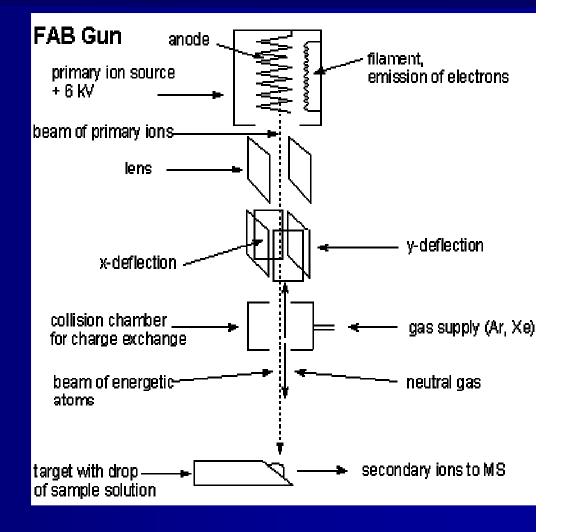

Fast Atom Bombardment (FAB)

FAB

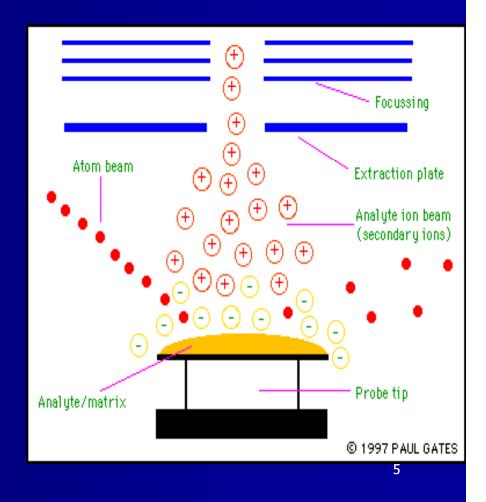
- Also known as liquid secondary ion mass spectrometry (LSIMS)
- An ionization source similar to MALDI in that it uses a matrix and a highly energetic beam of particles to desorb ions from a surface
- Difference between MALDI and FAB
 Ionization Source: Laser Atom beam
 Matrix: solid crystalline liquid
 Sensitivity: FAB 1000 times less sensitive

FAB


Soft Ionization technique

- Used to analyze <u>polar</u>, ionic, thermally and energetically <u>labile and high MW compounds</u> that are not amenable to EI/CI
- MW between 300-6000Da
- Sample is <u>dissolved in a matrix</u> and bombarded with Ar/Xe atoms (8-15keV) or fast ions (Cs⁺ up to 35 keV).
- Observed peaks in FAB are those of matrix cluster ions, analyte ions (M⁺ and M⁻), impurities, and ions of matrix modifiers

FAB Gun


• Ar/Xe ions are generated by EI

• The ions are accelerated, focussed and neutralized by charge exchange with neutral Ar/Xe in the collision cell.

How Does FAB Work?

- Fast moving beam is directed towards the sample
- Sample is dissolved in a matrix and placed on target
- Beam collides producing +ve and -ve ions from matrix, analyte etc

FAB (contd...)

■ TFA often added to enhance [M+H]⁺ formation

Classes that use FAB are: peptides, proteins, fatty acids, organometallics, surfactants, carbohydrates and antibiotics

FAB Matrix

- 1. Facilitating the desorption and ionization process
- 2. Constantly replenish the surface with new sample as it is bombarded by the incident ion beam
- 3. By absorbing most of the incident energy, the matrix also minimizes sample degradation from the high-energy particle beam.
- Two of the most common matrices used
 m-nitrobenzyl alcohol (NBA) glycerol

Choice of Matrix in FAB: Often A Trial and Error Process

- Sample MUST be soluble in matrix
- Under vacuum conditions matrix must have low volatility (so that matrix/sample will maintain liquid nature)
- Matrix ions should not interfere with analyte ions
- Matrix should not undergo unexpected chemical reactions with the sample ions.

Examples of Matrices

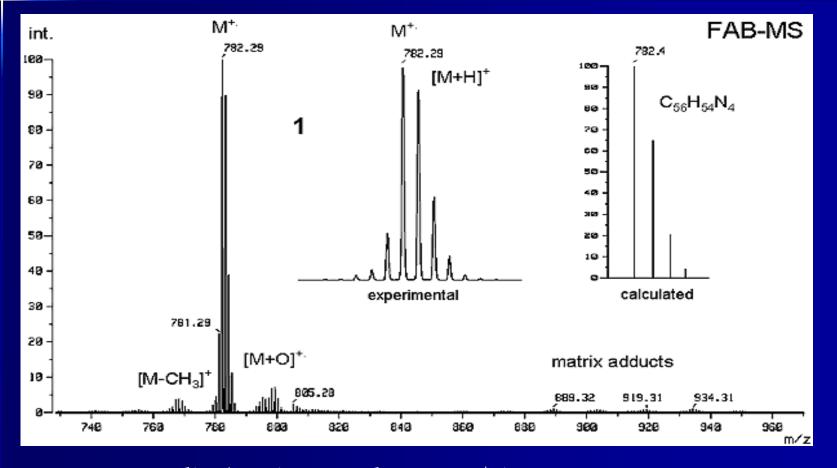
- Thio Glycerol (for PEG, polypeptides)
- Gycerol
- Magic bullet (3:1 mix of dithiothreitol and dithioerythritol)
- 3-nitro benzyl alcohol
- diethanolamine

Care During FAB

If there are salts present during FAB, [M+Na]⁺ and/or [M+K]⁺ ions will appear (and complicate spectra) which may suppress [M+H]⁺ formation

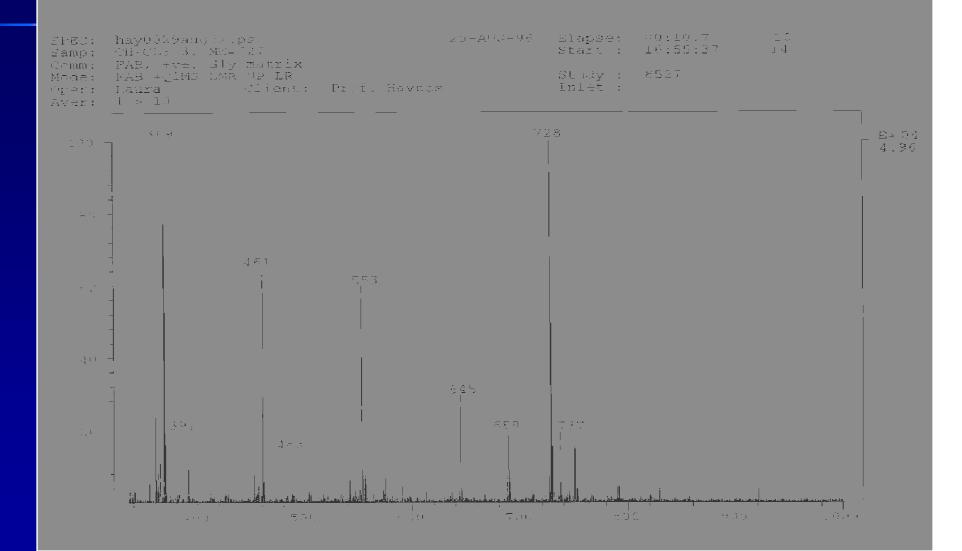
Some samples like strong acids (strong sulphonic acids) will give –ve ion spectra better than +ve ion spectra in FAB (here the pseudo molecular ion is the deprotonated species [M-H]⁻

Plus and Minus of FAB


Advantages

- Rapid
- Simple
- High mass compounds
- Thermally labile compounds
- Relatively tolerant of variations in sampling
- Good for a large variety of compounds
- Strong ion current (high res)
- Nanomolar samples

Disadvantages


- High chemical background
- Analyte must be soluble in matrix
- Bad for multiply charged compounds for more than 2 charges
- No fragment library
- Low sensitivity
- Needs skilled operator

FAB Spectra of Trimethylporphyrin

Radical cations and $[M+H]^+$ ions

Interference from Matrix Ions Can Be Serious [M+H]⁺ =728

