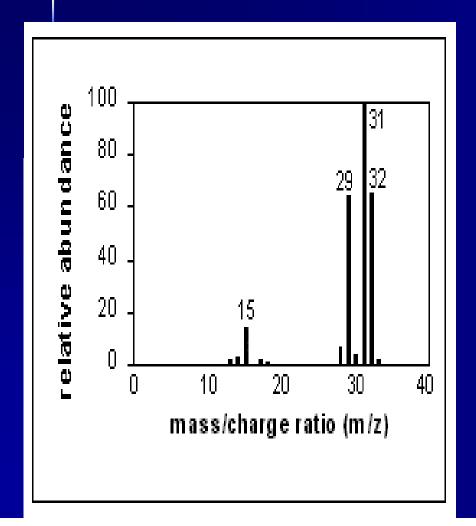

Electron Ionization (EI)

Electron Ionization (EI)

Electron Ionization (EI)

- Electron beam from a tungsten filament to knock off an electron from analyte to form an ion
- Electrons are usually accelerated by a potential of 70eV
- The paths of the electrons and the molecules are at right angles and they intersect at the source where collisions and ionizations occur
- Excess energy results in "daughter ions"
- Hard ionization technique
- "Daughter ions" can be used to identify target compounds


Electron Ionization (EI) (contd...)

- Can be performed in direct probe as well as interfaced
- Sample can be solid, liquid or gas has to be volatile
- High sensitivity can be obtained

EI Fragmentation of MeOH

$$CH_{3}OH$$
------> $CH_{3}OH$
 $CH_{3}OH$ -----> $CH_{2}=OH$
 $CH_{3}OH$ -----> CH_{3} + OH
 $CH_{2}=OH$ -----> $CH \equiv O$ + H

EI Mass Spectrum of MeOH

ions	m/z
CH3OH ₊ .	32
H ₂ C=OH ⁺	31
HC≡O [*]	29
H ₃ C ⁺	15

Typical Reactions In EI Source

Molecular ion formation

Fragmentation

$$ABCD + e^{-} \rightarrow ABCD^{*+} + 2e^{-}$$

$$ABCD^{*+} \rightarrow A^{+} + BCD^{*}$$

$$A^{*} + BCD^{+} \rightarrow BC^{+} + D$$

$$AB^{+} + AB^{+} \longrightarrow A^{+} + A^{+}$$

$$AB^{*} + CD^{+} \longrightarrow C^{+} + C^{+}$$

Rearrangement followed by fragmentation

$$ABCD^{\bullet+} \rightarrow ADBC^{\bullet+} \longrightarrow BC^{\bullet} + AD^{+}$$

Collision followed by fragmentation

$$ABCD^{\bullet+} + ABCD \rightarrow (ABCD)^{\bullet2+} \rightarrow BCD^{\bullet} + ABCDA^{+}$$

PLUS and MINUS of EI

Advantages of EI

- Reproducible method
- High Ionization Efficiency
- Ionization is nonselective
- Extensive fragmentation occurs
- Interface to GC possible

- Libraries of EI spectra help ID
- Improved sensitivity by having no suppression
- All vaporized molecules can be ionized (non polar and insoluble)
- Molecular structural information

Disadvantages of EI

- Only +ve ions are formed
- Sample has to be volatile
- Large internal energy method
- No interface to LC
- Solid probes need skilled operator

- Not ideal for some classes of compounds
- Rearrangement process complicates spectra
- Limits to 600Da or lessMW
- Limits value in MW
 determination due to
 extensive fragmentation